Singlet Oxygen Production in the Reaction of Potassium Superoxide with Chlorine

Qingwei Li, Fang Chen, Weili Zhao, Mingxiu Xu, Benjie Fang, Yuelong Zhang,

Liping Duo, Yuqi Jin, and Fengting Sang*

Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences,

Dalian 116023, P. R. China

(Received December 25, 2006; CL-061509; E-mail: sft@dicp.ac.cn)

The study of singlet oxygen $({}^{1}O_{2})$ emission showed that the ${}^{1}O_{2}$ could be efficiently produced in the reaction of solid potassium superoxide (KO₂) particles with chlorine gas (Cl₂), which only occurred on the surface of solid KO₂ particles. The liquid water may accelerate the reaction of Cl₂ with KO₂ and make a complete conversion of KO₂ to ${}^{1}O_{2}$. The KO₂ had a similar efficiency for ${}^{1}O_{2}$ production as the alkali metal peroxides (such as Li₂O₂ and Na₂O₂) as reacting with Cl₂.

Potassium superoxide (KO₂) that can provide superoxide ion (O₂⁻) is an important source for singlet oxygen (¹O₂) production through some electron-transfer reactions.^{1–3} However, these reactions have a low efficiency for ¹O₂ production and are usually used for studying the biological processes.⁴ Recently, Alfano and Christe⁵ identified two previously unreported gas– solid reactions for ¹O₂ generation:

$$Na_2O_2(s) + 2HCl(g) \rightarrow 2NaCl(s) + H_2O(g) + 1/2O_2(^1\Delta_g) \quad (1)$$

$$Na_2O_2(s) + Cl_2(g) \rightarrow 2NaCl(s) + O_2(^1\Delta_g)$$
(2)

The solid Na₂O₂ may be replaced by other solid inorganic peroxides (such as Li_2O_2 or BaO_2), and HCl may also be replaced by HBr or deuterated halide gas for the two reactions. The two reactions provide a new source for 1O_2 production, in which the starting materials required are commercially available, moderately priced and safe to handle. The new reactions are attractive for chemical oxygen–iodine laser (COIL).^{5,6} Also, they may be used as an alternative source of 1O_2 for organic synthesis⁷ and waste water treatment.⁸

Also, the KO₂ may be used as a replacement of Na_2O_2 and react with HCl or Cl₂ for 1O_2 production which would follow a different balanced equation:

$$2\text{KO}_2(s) + 2\text{HCl}(g) \rightarrow 2\text{KCl}(s) + \text{H}_2\text{O}(g) + 3/2\text{O}_2(^1\Delta_g)$$
 (3)

$$2\mathrm{KO}_2(\mathrm{s}) + \mathrm{Cl}_2(\mathrm{g}) \to 2\mathrm{KCl}(\mathrm{s}) + 2\mathrm{O}_2({}^{\mathrm{t}}\Delta_{\mathrm{g}}) \tag{4}$$

Compared to the reaction (1) or (2), the reaction (3) or (4) can produce an equivalent ${}^{1}O_{2}$ with a much less quantity of the gas reactant which suggests that the reaction can further reduce the weight and cost for ${}^{1}O_{2}$ production as used in COIL system and other applications required ${}^{1}O_{2}$. Alfano and Christe^{5a} had studied the reaction of KO₂ with HCl, but a weak emission signal due to ${}^{1}O_{2}$ was observed. They suggested that KO₂ was inferior to alkali metal and alkaline-earth metal peroxides for ${}^{1}O_{2}$ production as reacting with HCl. However, there are no studies undertaken on the ${}^{1}O_{2}$ production from the reaction of KO₂ with Cl₂. In the present study, the ${}^{1}O_{2}$ production from the reaction of solid KO₂ particles with Cl₂ gas was examined and studied.

The gas–solid reactions for ¹O₂ production were all strongly exothermic chemical reactions which would liberate a large IR blackbody emission and significantly influenced the detection of ${}^{1}O_{2}$ emission when these reactions were conducted in a fixed-bed reactors.^{5c,9} The liquid CCl₄ is a favored medium for ${}^{1}O_{2}$ experiments because of the long life time of ${}^{1}O_{2}$ in this solvent (31 ms),¹⁰ and at the same time it can function as a cooling agent and keep a lower temperature of surroundings that would reduce the large IR blackbody emission in the experiments. Therefore, for a convenience in studying and monitoring the ${}^{1}O_{2}$ emission, we developed a reaction system in which the finely divided particles of KO₂ were suspended in liquid CCl₄ by constant stirring in a reaction cell and then react with a continuous flow of Cl₂ gas through the reaction cell (denoted as KO₂(CCl₄)–Cl₂).

The emission spectra in the region of 530-805 and 1215-1325 nm from the $KO_2(CCl_4)$ – Cl_2 reaction were simultaneously recorded and shown in Figure 1. A strong monomol emission band at 1270 nm due to $O_2({}^1\Delta_g) \rightarrow O_2({}^3\sum_g{}^-){}^{11}$ and a weak dimole emission bands at 634 or 703 nm due to $2O_2({}^1\Delta_g) \rightarrow$ $2O_2(^3\sum_g^{-})^{12}$ were observed. And a relatively stronger emission of 1O_2 not only at 1270 nm but also at 634 or 703 nm was observed at the reaction pressure of 700 Torr compared to those at the reaction pressure of 230 Torr. It implied that a higher reaction pressure was favored for ¹O₂ production in the KO₂(CCl₄)-Cl₂ reaction process. It has been reported that the ${}^{1}O_{2}$ may be produced from the reaction of CCl₄ with KO₂,² but there are some studies reporting that CCl₄ was inert to KO₂ and could not produce ¹O₂.³ Herein, we monitored the emission spectra in the mixing process of KO₂ with CCl₄ in our experiment conditions. Consequently, no any emission band due to ¹O₂ was observed. The results led us to conclude that the CCl₄ is nearly inert to KO₂ and the most of ¹O₂ produced from the KO₂(CCl₄)-Cl₂ reaction system was generated from the reaction of Cl₂ with solid KO₂ particles.

The chemiluminescence (CL) intensity of ${}^{1}O_{2}$ at 1270 nm was also monitored during the KO₂(CCl₄)–Cl₂ reaction course and a sharp and strong CL with duration of ca. 10 s were observed (Figure 2, curve A). When the CL faded away, a

Figure 1. Emission spectra in the region of 530–805 nm (a) and 1215–1325 nm (b) of ${}^{1}O_{2}$ generated from the reaction of Cl₂ with KO₂ (2 g) suspension in CCl₄ (60 mL) at reaction pressure of 230 and 700 Torr.

Figure 2. Chemiluminescence (CL) of ${}^{1}O_{2}$ at 1270 nm from: (A) the KO₂(CCl₄)–Cl₂ system in which Cl₂ react with KO₂ (10 g) suspension in CCl₄ (60 mL) and (B) the KO₂(CCl₄)–H₂O–Cl₂ system in which Cl₂ and H₂O (20 mL) react with KO₂ (10 g) suspended in CCl₄ (40 mL). The reaction pressure of the two reaction systems were all kept at about 700 Torr.

Figure 3. Emission spectra in the region of 530–805 nm (a) and 1215–1325 nm (b) of ${}^{1}O_{2}$ generated from the reaction of Cl₂ gas with different solid reactant suspension in CCl₄ (60 mL): (A) KO₂ (2 g), (B) Li₂O₂ (2 g), (C) Na₂O₂ (6 g), (D) SrO₂ (8 g), and (E) BaO₂ (8 g). The reaction pressure of the five reaction systems was all kept at about 200–230 Torr.

10 mL of H₂O was injected into the reaction cell and a relative weak CL was observed again with duration of ca. 15 s. The results implied that the O_2^- in the surface of solid KO₂ particles could be readily oxidized by Cl₂ and converted to 1O_2 . However, a layer of solid product of KCl was formed on the solid KO₂ particles. This solid layer of KCl would cause a difficulty in Cl₂ diffusing into the inner of KO₂ particles and reacting with KO₂ and also cause a difficulty in 1O_2 rapidly diffusing out of the inside of solid KO₂ particles.

For a comparison, a three-phase reaction of the gaseous Cl_2 and liquid H₂O simultaneously with the KO₂ suspension in CCl₄ (denoted as KO₂(CCl₄)–H₂O–Cl₂) was conducted. A relative flatten and a relative weak CL at 1270 nm was observed but with a longer duration of ca. 60 s was observed (Figure 2, curve B). The recorded emission spectra from the KO₂(CCl₄)–H₂O–Cl₂ reaction confirmed that the CL at 1270 nm was due to the ¹O₂ emission (emission spectra see Supporting Information).¹⁴ The results indicated that H₂O could accelerate the ¹O₂ production from the reaction of Cl₂ with KO₂ and make a complete conversion of KO₂ to ¹O₂.

The emission spectra from the KO₂(CCl₄)–H₂O–Cl₂ reaction was compared to those from the reaction of Cl₂ with the solution of KO₂ dissolved in H₂O and the well-known reaction of Cl₂ with basic hydrogen peroxide (BHP) solution (see Supporting Information).¹⁴ The results indicated that, in the process of the KO₂(CCl₄)–H₂O–Cl₂ reaction, the H₂O may dissolve the product of KCl and react with KO₂ and then form a much more reactive specie of HO₂⁻ which is also presented in BHP solution and can react with Cl₂ with a nearly 100% yield of ¹O₂.^{3b,13} It

implied that a nearly 100% yield of ${}^{1}O_{2}$ may be obtained in the KO₂(CCl₄)–H₂O–Cl₂ reaction. However, the H₂O increased the ${}^{1}O_{2}$ deactivation in the KO₂(CCl₄)–H₂O–Cl₂ reaction process, and we could observe that its maximum of CL intensity at 1270 nm (2.5 mV) was much smaller than the maximum of CL intensity at 1270 nm (6.2 mV) in the KO₂(CCl₄)–Cl₂ reaction course (see Figure 2). A rough comparison of their stationary concentration of ${}^{1}O_{2}$ showed the maximum stationary concentration of ${}^{1}O_{2}$ obtained during the KO₂(CCl₄)–Cl₂ reaction course may reach nearly a half of that obtained during the KO₂(CCl₄)–H₂O–Cl₂ reaction course (see Supporting Information).¹⁴ It implied that ${}^{1}O_{2}$ could also be produced with a high yield from the reaction of Cl₂ with the clean surface of KO₂ particles.

The experiments using the alkali metal peroxides (such as Li_2O_2 and Na_2O_2) or alkaline-earth metal peroxides (such as SrO_2 and BaO_2) as a replacement of KO_2 in the $KO_2(CCl_4)$ – Cl_2 reaction were also conducted. A comparison of their emission spectra was shown in Figure 3. Their emission spectra all showed a strong emission band at 1270 nm. But a weak emission band at 634 or 703 nm was only obtained in the reaction system using KO_2 and Li_2O_2 and Na_2O_2 as solid reactant and no emission at 634 or 703 nm was obtained in the reaction system using SrO_2 and BaO_2 as solid reactant. This implied that the KO_2 had the same ability as the alkali metal peroxides and was prior to the alkaline-earth metal peroxides for 1O_2 production in efficiency as them reacting with Cl_2 .

In summary, ${}^{1}O_{2}$ can be high efficiently produced in the reaction of Cl₂ with KO₂, but it only took place on the surface layer of solid KO₂ particles. The H₂O may accelerate ${}^{1}O_{2}$ production from the reaction of Cl₂ with KO₂ and make a complete conversion of KO₂ to ${}^{1}O_{2}$. And the KO₂ had a similar efficiency for ${}^{1}O_{2}$ production as the alkali metal peroxides (such as Li₂O₂ and Na₂O₂) as reacting with Cl₂, whereas the reaction of Cl₂ with KO₂ was much more economical in weight and cost because it could produce an equivalent ${}^{1}O_{2}$ with a consumption of a half quantity of Cl₂ compared to the reaction of Cl₂ with solid peroxides.

Financial support partially from the National 863 Hi-Tech R&D Project of P. R. China is gratefully acknowledged.

References and Notes

- a) W. C. Danen, R. L. Arudi, J. Am. Chem. Soc. 1978, 100, 3944. b) L. A. MacManus-Spencer, B. L. Edhlund, K. McNeill, J. Org. Chem. 2006, 71, 796.
 A. U. Khan, J. Am. Chem. Soc. 1981, 103, 6516.
- 3 a) J. R. Kanofsky, J. Am. Chem. Soc. 1986, 108, 2977. b) J. R. Kanofsky, J. Am. Chem. Soc. 1988, 110, 3698.
- 4 A. U. Khan, M. Kasha, Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 12365.
- a) A. J. Alfano, K. O. Christe, Angew. Chem., Int. Ed. 2002, 41, 3252. b) A. J. Alfano, K. O. Christe, U.S. Patent 6 623 718 B1, 2003. c) A. J. Alfano, K. O. Christe, USA AFRL Report, No. AFRL-PR-ED-TR-2004-0041, 2004.
- 6 a) J. Kodymova, Proc. SPIE 2005, 5958, 595818-1-11. b) N. N. Yuryshev, Quantum Electron. 1996, 26, 567.
- 7 a) M. Prein, W. Adam, Angew. Chem., Int. Ed. Engl. 1996, 35, 477. b) A. G. Leach, K. N. Houk, Chem. Commun. 2002, 1243.
- 8 H. D. Burrows, L. S. Ernestova, T. J. Kemp, Y. I. Skurlatov, A. P. Purmal, A. N. Yermakov, Prog. React. Kinet. Mech. 1998, 23, 145.
- 9 Q. Li, F. Chen, W. Zhao, L. Duo, Y. Jin, F. Sang, et al., *High Power Laser and Particles Beams (Chinese)* 2006, 18, 1761.
- 10 T. A. Jenny, N. J. Turro, Tetrahedron Lett. 1982, 23, 2923.
- 11 a) K. Böhme, H.-D. Brauer, *Inorg. Chem.* **1992**, *31*, 3468. b) A. A. Krasnovsky, *Photochem. Photobiol.* **1979**, *29*, 29.
- 12 A. U. Khan, M. Kasha, J. Am. Chem. Soc. 1970, 92, 3293.
- 13 A. M. Held, D. J. Halko, J. K. Hurst, J. Am. Chem. Soc. 1978, 100, 5732.
- 14 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.

Published on the web (Advance View) March 3, 2007; doi:10.1246/cl.2007.496